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1. Introduction and Results

We shall obtain Lq,loc(ΩT ) and L∞,loc(ΩT ) estimates for a class of equations
modeled after

ut − div(|∇u|p−2∇u) = f(x, t) + div g.(1)

If p > 2 the equation is degenerate, while if p < 2 the problem is singular. In
particular, we shall study solutions of equations of the form

ut − div a(x, t, u,∇u) = b(x, t, u,∇u)(2)

on domains ΩT = Ω× (0, T ) where Ω ⊂ RN and the equation satisfies the following
structure conditions for each (x, t, u,v) ∈ Ω× (0, T )×R×RN

(H1) 1 < p ≤ δ < p
(
N+2
N

)
≡ m, ci ≥ 0 for 0 ≤ i ≤ 5, c0 > 0, and φj ≥ 0 for

0 ≤ j ≤ 2,
(H2) a(x, t, u,v)·v ≥ co|v|p − c3|u|δ − φo(x, t),
(H3) |a(x, t, u,v)| ≤ c1|v|p−1 + c4|u|δ(1−

1
p ) + φ1(x, t),

(H4) |b(x, t, u,v)| ≤ c2|v|p(1−
1
δ ) + c5|u|δ−1 + φ2(x, t),

(H5) φ1 ∈ L p
p−1 ,loc

(ΩT ),
(H6) φo ∈ Lµ,loc(ΩT ) with µ > 1, and φ1, φ2 ∈ Ls,loc(ΩT ) with s > m

m−1 ,
while on the solution u we assume
(H7) For every 0 ≤ t1 < t2 ≤ T and for every Ω′ b Ω

ess sup
t1<t<t2

∫
Ω′
|u(x, t)|2 dx+

∫ t2

t1

∫
Ω′
|∇u|p dx dt <∞,

(H8) u ∈ Lr,loc(ΩT ) for some r > N
p (2− p).

By a weak solution of (2) we mean a function u that satisfies H8 and for which∫∫
ΩT

{−uψt + a(x, t, u,∇u)·∇ψ} dx dt =
∫∫

ΩT

b(x, t, u,∇u)ψ dx dt(3)

for all ψ ∈ C∞0 (ΩT ).
Our main result is the following.
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2 MIKE O’LEARY

Theorem 1. Let u be a weak solution of (2), and suppose that H1-H8 are
satisfied.

If min{s, µ} > (N + p)/p, then u ∈ L∞,loc(ΩT );
if min{s, µ} = (N + p)/p, then u ∈ Lq,loc(ΩT ) for all q <∞;
if min{s, µ} < (N + p)/p, then u ∈ Lq,loc(ΩT ) for all q < q∗, where

q∗ = min

{
m− (1 + p

N )
1− (1− 1

s )(1 + p
N )

,
m

1− (1− 1
µ)(1 + p

N )

}
.(4)

Moreover, the resulting bounds are independent of ||φ1||L p
p−1 ,loc

(ΩT ).

Regularity properties of solutions of these types of equations have been ex-
tensively studied; an excellent reference is the book of DiBenedetto [5]. More
specifically, Hölder continuity of solutions was proven in the degenerate case by
DiBenedetto and Friedman [6, 7], while in the singular case by Y.Z. Chen and
DiBenedetto in [3, 4]. Local boundedness of solutions under appropriate struc-
ture conditions was proven by Porzio [14] and these results have been extended to
equations with more general structure in [1, 8, 9, 11, 12, 15, 17, 18].

The results contained in this paper have the following new features. First, to
the best of this author’s knowledge, this is the only result which yields informa-
tion about the degree of local integrability of solutions which are not necessarily
bounded. Secondly, this result extends the class of equations for which the local
boundedness of solutions is guaranteed. Indeed, for the case p > 2N

N+2 , in [5, Chp.
5, Thm 3.1] boundedness of solutions was proven only if

φ
p
p−1
1 , φ

δ
δ−1
2 ∈ Ls,loc(ΩT ) for s >

N + p

p
.(5)

In the case p ≤ 2N
N+2 , local boundedness was proven in [5, Chp. 5, Thm. 5.1]

only if the problem had homogeneous structure, meaning (H2), (H3) and (H4)
are replaced by the requirements a(x, t, u,v) ·v ≥ co|v|p, |a(x, t, u,v)| ≤ c1|v|p−1

and b(x, t, u,v) = 0; moreover further global information was required, to the effect
that the solution could be approximated weakly in Lr,loc(ΩT ) by bounded solutions.
Only under these additional conditions, now no longer necessary, was boundedness
proven.

We remark that the results of this note are almost optimal in the sense that
they almost agree with the results of the linear case (p = 2). In particular, in [10,
Chp. 3, Secs. 8,9] it is shown that solutions of linear problems of the form

ut − {aij(x, t)uxj + ai(x, t)u}xi + bi(x, t)uxi + a(x, t)u = φ(x, t) + φixi(6)

when φ ∈ Ls,loc(ΩT ) and φi ∈ Lµ,loc(ΩT ) are in L∞(ΩT ) when min{s, µ} > (N +
p)/p, while they are in Lq,loc(ΩT ) for all q <∞ if min{s, µ} = (N + p)/p, and are
in Lq∗,loc(ΩT ) otherwise, where q∗ is the number in Theorem 1 with p = 2.

A few comments on our hypotheses are now in order. The assumption H5 is
made only to ensure that terms of the form a(x, t, u,∇u)·∇u are integrable. This
information is needed only qualitatively and the resulting bounds are independent
of ||φ1|| p

p−1
. The restriction on s in H6 is exactly that which is needed to ensure

that q∗ > m; recall that H7 and the Sobolev embedding theorem will imply that
u ∈ Lm,loc(ΩT ). Finally, it is noted in [5] that the requirement H8 is necessary to
prove boundedness of the solutions.
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ESTIMATES FOR QUASILINEAR EQUATIONS 3

2. Proof of the Lq,loc(ΩT ) Estimates for q <∞

The first step in our proof is the following local energy estimate.

Proposition 2. Suppose that u is a solution of (2) and that H1-H8 are sat-
isfied. Then for any QR(xo, to) ≡ BR(xo)× (to −Rp, to) b ΩT , for any 0 < σ < 1,
and for any k > 0 we have[∫∫

QσR

(u ∓ k)m± dx dt
] 1

1+p/N

≤ γ

(1− σ)pRp

∫∫
QR

(u∓ k)2
± dx dt

+
γ

(1− σ)pRp

∫∫
QR

(u∓ k)p± dx dt+ γ

∫∫
QR

|u|δχ[(u∓ k)± > 0] dx dt

+ γ

[ ||φ1||Ls(QR)

(1− σ)R
+ ||φ2||Ls(QR)

] [∫∫
QR

(u ∓ k)
s
s−1
± dx dt

]1− 1
s

+ γ||φo||Lµ(QR)(meas[(u∓ k)± > 0])1− 1
µ

(7)

where γ depends only on ci, N , p, δ, s and µ, but is independent of k.

This is a standard result proven by using a smooth cutoff approximation of
(u∓ k)± as a testing function; for details see [13] or [5, Chp. 5, Prop. 6.1].

Our plan is to start with the assumption that u ∈ Lβ,loc(ΩT ) for some β ≥ m.
We shall then estimate (7) in terms of ||u||Lβ(QR) and powers of k. This will give us
an estimate of the form |u|Lweak

α(β)(QσR) ≤ C for some function α(β), which will give
us our Lq,loc(ΩT ) estimates for q <∞.

Indeed, recall that a measurable function u is an element of Lweak
q (U) if and

only if

|u|q
Lweak
q
≡ sup

k>0
kq meas[|u| > k] <∞.(8)

Moreover, Lq(U) ⊂ Lweak
q (U) ⊂ Lq′(U) for all q′ < q provided U is bounded. More

details about the spaces Lweak
q (U) can be found in [2, Chp. 1] or [16, IX.4].

As a consequence, our knowledge that u ∈ Lweak
α(β),loc(ΩT ) lets us conclude that

u ∈ Lq,loc(ΩT ) for all q < α(β). Repeating this process then tells us that u ∈
Lq,loc(ΩT ) for all q < (α ◦ α ◦ · · · ◦ α)(β). Carefully calculating α(β) and iterating
shall then give us our Lq,loc(ΩT ) estimates.

Indeed, estimate the left side of (7) with the (u− k)+ choice as∫∫
QσR

(u− k)m+ dx dt ≥ km meas
QσR

[u > 2k].(9)

On the other hand, if θ < β then

(10)
∫∫

QR

(u− k)θ+ dx dt ≤
[∫∫

QR

(u − k)β+ dx dt

] θ
β

(meas[u > k])1− θ
β

≤ ||u||θLβ(QR)

[
1
kβ
|u|β

Lweak
β (QR)

]1− θβ
≤ ||u||βLβ(QR)

(
1
k

)β−θ
.
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4 MIKE O’LEARY

Using this in (7) then gives us an estimate of the form

(11)
(
km meas

QσR
[u > 2k]

) 1
1+p/N

≤ γ||u||βLβ(QR)

[(
1
k

)β−2

+
(

1
k

)β−p
+
(

1
k

)β−δ]

+ γ||u||β(1− 1
s )

Lβ(QR)

(
1
k

)β(1− 1
s )−1

+ γ||u||β(1− 1
µ )

Lβ(QR)

(
1
k

)β(1− 1
µ )

for a γ that also depends on σ, R, ||φo||Lµ(QR) and ||φ1, φ2||Ls(QR). If we repeat this
process for (u+ k)−, we obtain the estimate

(12) meas
QσR

[u > k] ≤ γ
[(

1
k

)(β−2)(1+ p
N )+m

+
(

1
k

)(β−δ)(1+ p
N )+m

+
(

1
k

)[β(1− 1
s )−1](1+ p

N )+m

+
(

1
k

)β(1− 1
µ )(1+ p

N )+m
]

for all k ≥ 1, where γ now also depends on ||u||Lβ(QR). As a consequence

|u|Lweak
α(β)(QσR) ≤ C(13)

where

α1(β) = (β − 2)
(

1 +
p

N

)
+m, α3(β) =

[
β

(
1− 1

s

)
− 1
](

1 +
p

N

)
+m,

α2(β) = (β − δ)
(

1 +
p

N

)
+m, α4(β) = β

(
1− 1

µ

)(
1 +

p

N

)
+m,

and

α(β) = min{α1(β), α2(β), α3(β), α4(β)}.(14)

For the iteration, we start by setting

βo = max{2,m, r}(15)

because the Sobolev embedding theorem and our hypotheses guarantee that u ∈
Lβo,loc(ΩT ). We shall analyze the sequence of iterations (α ◦ α ◦ · · · ◦ α)(βo) by
cases.

Case 1: α1. Because we can rewrite α1(β) as

α1(β) =
(

1 +
p

N

)
β + (p− 2),(16)

we see that α1(β) > β if and only if

β >
N

p
(2− p).(17)

As a consequence if βo > N
p (2−p), then the sequence βo, α1(βo), α1(α1(βo)), · · · will

tend to infinity. Indeed, the above shows that the sequence is monotone increasing,
so if it tended to a finite limit, that limit would be a fixed point of α1 greater than
β0. Since there are no such fixed points, we can conclude that the sequence tends
to infinity.

That the requirement βo > N
p (2 − p) is satisfied is an immediate consequence

of H7 and the fact that β ≥ r.
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ESTIMATES FOR QUASILINEAR EQUATIONS 5

Case 2: α2. Now α2(β) > β if and only if

β > δ − N

p
(m− δ).(18)

Then because βo ≥ m > δ > δ − N
p (m − δ), we conclude that the sequence

βo, α2(βo), α2(α2(βo)), · · · tends to infinity for the same reasons as case 1.
Case 3: α3. Here the situation is somewhat different. Since m − (1 + p

N ) >
0, we see that the sequence βo, α3(βo), α3(α3(βo)), · · · tends to infinity provided
(1− 1

s )(1 + p
N ) ≥ 1 or equivalently if s ≥ N+p

p . If not, we see that α3(β) > β if and
only if

β <
m− (1 + p

N )
1− (1− 1

s )(1 + p
N )

(19)

so that βo, α3(βo), α3(α3(βo)), · · · tends to

q∗s ≡
m− (1 + p

N )
1− (1− 1

s )(1 + p
N )

.(20)

Case 4: α4. This is handled in much the same fashion as case 3. Indeed if
µ ≥ N+p

p then βo, α4(βo), α4(α4(βo)), · · · tends to infinity; otherwise it tends to

q∗µ ≡
m

1− (1− 1
µ )(1 + p

N )
.(21)

Since q∗ = min{q∗s , q∗µ}, we have our Lq,loc(ΩT ) estimates for q <∞.

3. The L∞,loc(ΩT ) Estimates

The boundedness of the solutions shall now be proven using the usual DeGiorgi
methods, coupled with an interpolation in the case when m ≤ 2.

Indeed, let Qρ(xo, to) b ΩT , fix 0 < σ < 1, and let k > 0 be chosen later. Then
set

ρn = σρ+
1− σ

2n
ρ, kn = k

(
1− 1

2n+1

)
,(22)

and let Qn = Qρn(xo, to). We now apply (7) where we replace k by kn+1, and QR
by Qn, and QσR by Qn+1. This then gives us[∫∫

Qn+1
(u− kn+1)m+ dx dt

] 1
1+p/N

≤ γ2np

(1− σ)pρp

∫∫
Qn

u− kn+1)2
+ dx dt

+
γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)p+ dx dt+ γ

∫∫
Qn
|u|δχ[u > kn+1] dx dt

+
γ2n

(1− σρ)

[∫∫
Qn

(u− kn+1)
s
s−1
+ dx dt

]1− 1
s

+ γ(measAn+1)1− 1
µ

(23)

where

An+1 = {(x, t) ∈ Qn : u(x, t) > kn+1}.(24)

Note that

measAn+1 ≤
(

2n+2

k

)θ ∫∫
Qn

(u− kn)θ+ dx dt(25)
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6 MIKE O’LEARY

for each θ ≥ 1; this follows from the fact that∫∫
Qn

(u− kn)θ+ dx dt ≥ (kn+1 − kn)θ measAn+1.(26)

What happens next depends on the parameter m.
Case 1: m > 2. In this instance we shall obtain an iterative inequality for

Yn ≡
∫∫

Qn
(u− kn)m+ dx dt =

1
measQn

∫∫
Qn

(u− kn)m+ dx dt(27)

with the aid of (23). Indeed,

γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)2
+ dx dt

≤ γ2np

(1 − σ)pρp

[∫∫
Qn

(u− kn+1)m+ dx dt

] 2
m

(measAn+1)1− 2
m

≤ γ2np

(1 − σ)pρp

(
2n+2

k

)m−2 ∫∫
Qn

(u− kn)m+ dx dt

≤ γ

(1 − σ)pkm−2
ρN2(p+m−2)nYn

(28)

while similarly

γ2np

(1− σ)pρp

∫∫
Qn

(u− kn+1)p dx dt ≤ γ

(1− σ)pkm−p
ρN2mnYn.(29)

Further, because

u(x, t)
u(x, t)− kn

≤ kn+1

kn+1 − kn
(30)

for all (x, t) ∈ [u > kn+1], we have the estimate∫∫
Qn
|u|δχ[u > kn+1] dx dt ≤ γ 1

km−δ
ρN+p2mnYn.(31)

Finally, because s
s−1 ≤ m

(32)
γ2n

(1− σ)ρ

[∫∫
Qn

(u− kn+1)
s
s−1
+

]1− 1
s

≤ γ

(1− σ)km(1− 1
s )−1

ρ(N+p)(1− 1
s )−12[m(1− 1

s )−1]nY 1− 1
s

n ,

and

γ (measAn+1)1− 1
µ ≤ γ

km(1− 1
µ )
ρ(N+p)(1− 1

µ )2m(1− 1
µ )nY

1− 1
µ

n .(33)
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Combining these results gives us the estimate

ρN+pYn+1 ≤
γρN+p2(p+m−2)(1+ p

N )n

(1 − σ)p+Nk(m−2)(1+ p
N )
Y

1+ p
N

n

+
γρN+p2(p+m)(1+ p

N )n

(1− σ)p+Nk(m−p)(1+ p
N )
Y

1+ p
N

n

+
γρ(N+p)(1+ p

N )2m(1+ p
N )n

k(m−δ)(1+ p
N )

Y
1+ p

N
n

+
γρ[(N+p)(1− 1

s )−1](1+ p
N )2[m(1− 1

s )−1](1+ p
N )n

(1− σ)1+ p
N k[m(1− 1

s )−1](1+ p
N )

Y
(1− 1

s )(1+ p
N )

n

+
γρ(N+p)(1− 1

µ )(1+ p
N )2m(1− 1

µ )(1+ p
N )n

km(1− 1
µ )(1+ p

N )
Y

(1− 1
µ )(1+ p

N )
n .

(34)

Then, because m(1 − 1
s ) − 1 > 0, we find that there are constants A and B inde-

pendent of n and k so that

Yn+1 ≤ ABnY
1+ p

N
n +ABnY

(1− 1
s )(1+ p

N )
n +ABnY

(1− 1
µ )(1+ p

N )
n .(35)

Our assumptions on s and µ imply that (1− 1
s )(1+ p

N ) > 1 and (1− 1
µ )(1+ p

N ) > 1,
so that standard results on fast geometric convergence imply that Yn → 0 if Yo
is sufficiently small. By choosing k sufficiently large, we can make Yo sufficiently
small and guarantee that

Y∞ =
∫∫

QσR

(u− k)m+ dx dt = 0,(36)

making u bounded above.
Similar considerations for (u+ k)− show that u is bounded below.
Case 2: m ≤ 2. Let λ > max {2,m} be chosen later and set

Yn =
∫∫

Qn
(u− kn)λ+ dx dt;(37)

this is well defined thanks to our Lq,loc(ΩT ) estimates. Now for Λ > λ > m, the
convexity inequality implies

(38) Yn+1 =
∫∫

Qn+1
(u− kn+1)λ+ dx dt

≤ 1
measQn+1

(∫∫
Qn+1

(u − kn+1)Λ
+ dx dt

) λ
Λ θ

×
(∫∫

Qn+1
(u− kn+1)m+ dx dt

) λ
m (1−θ)

where

θ =
1
m −

1
λ

1
m −

1
Λ

=
Λ
λ

λ−m
Λ−m.(39)
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8 MIKE O’LEARY

As a consequence,∫∫
Qn+1

(u− kn+1)m+ dx dt ≥ [measQn+1]
Λ−m
Λ−λ

1

||u||
λ−m
Λ−λ Λ

LΛ(Qρ)

Y
Λ−m
Λ−λ
n+1(40)

which estimates the left side of (23). The right side is estimated in the same fashion
as case 1, so that

γ2np

(1 − σ)pρp

∫∫
Qn

(u− kn+1)2
+ dx dt ≤ γρN2(p+λ−2)n

(1 − σ)pkλ−2
Yn,(41)

γ2np

(1 − σ)pρp

∫∫
Qn

(u− kn+1)p+ dx dt ≤ γρN2λn

(1− σ)pkλ−p
Yn,(42)

γ

∫∫
Qn
|u|δχ[u > kn+1] dx dt ≤ γρN+p2λn

kλ−δ
Yn,(43)

further

(44)
γ2n

(1− σ)ρ

[∫∫
Qn

(u− kn+1)
s
s−1
+ dx dt

]1− 1
s

≤ γρ(N+p)(1− 1
s )2[λ(1− 1

s )−1]n

(1− σ)kλ(1− 1
s )−1

Y
1− 1

s
n ,

and

γ (measAn+1)1− 1
µ ≤ γρ(N+p)(1− 1

µ )2λ(1− 1
µ )n

kλ(1− 1
µ )

Y
1− 1

µ
n .(45)

If we make these substitutions, we shall find constants A and B independent of n
and k so that

(46) Yn+1 ≤ ABnY
(1+ p

N )( Λ−λ
Λ−m)

n +ABnY
(1+ p

N )(1− 1
s )( Λ−λ

Λ−m )
n

+ABnY
(1+ p

N )(1− 1
µ )( Λ−λ

Λ−m )
n .

Then because

lim
Λ→∞

Λ− λ
Λ−m = 1(47)

we can choose Λ and λ sufficiently large that both (1 + p
N )(1 − 1

s )( Λ−λ
Λ−m ) > 1 and

(1 + p
N )(1 − 1

µ)( Λ−λ
Λ−m ) > 1. The usual results on fast geometric convergence let us

proceed as we did in case 1, giving us our result.
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